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The asymptotic behaviour of dynamic thermal, mechanical and electromagnetic fields near a singular line (a set of corner points) 
of a moving interface of thermoelectrically conducting media when they are subject to external dynamic thermoelectromechanical 
actions is established. © 2005 Elsevier Ltd. All rights reserved. 

The elastic fields in bodies under condition of generalized plane deformation with a non-smooth moving 
interface of the boundary conditions were investigated in [1]. 

An analytical investigation of the thermoelastic state of electrically conducting non-uniform three- 
dimensional bodies with non-smooth interfaces presupposes the construction of functions defining the 
corresponding fields. The class of such functions is determined by their behaviour near discontinuities 
of the boundary surfaces. A knowledge of the asymptotic form of the functions enables us to construct 
solutions of problems on the thermoelastic state of three-dimensional electrically conducting bodies 
in the same way as for the three-dimensional fields described by harmonic functions in regions with 
non-smooth boundaries [2]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose S = S 1 k.) S 2 is the interface between two thermoelastic electrically conducting bodies. The 
intersection of the smooth surfaces St and $2 defines a smooth singular line L = $1 n $2, which is a set 
of corner points. We will introduce local curvilinear orthogonal coordinates p, 0, s by the relation [2] 

r = ro + 9(cos0n2(s) + sin0n(s)) (I.1) 

where ro and r are the radius vectors of the points Mo E L and M, the point M lies in the plane of the 
vectors nn2 of the moving trihedron nntn2 at the point Mo, drawn on the singular line of the surface 
So, and is defined in this plane by the polar radius p and the angle 0, nt is the tangential vector to the 
singular line, n2 is the tangential vector to the drawn surface and s is the length of the arc of the singular 
line measured from a certain point on it. 

The elastic electrically conducting bodies considered to do not possess spontaneous polarization and 
magnetization and are subjected to the action of a mechanical load and a temperature field, and are 
also situated in a varying electromagnetic field. There are no external electric charges and currents on 
the contact surface, and the materials of the bodies have constant characteristics. 

Taking into account the effect of the field of the electric potential on the deformation process, the 
thermal conductivity and the electrical conductivity, we will choose as the governing quantities the 
displacement vector u, the temperature T and the electric potential ~. 
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The equations of equilibrium, heat conduction, conservation of electric charges and Maxwell's equa- 
tions must be satisfied at all points of the composite body, including at points on the singular line [3]. 
We have 

I 2 • 2 • _ c2jrotrotu j -  a4jgradT j -  asjgraddPj ~2Ul / llm cljgraddlvu j 3 t2)  = 0 

lim(ATj - b ~Tj Odivu I ~(I)j'~ 4j W -- bsj ~ + b 6 j - ~ )  = 0 

/ ~(~)j OT, bdivu~ . ~ 
l im~AdPj-daj-- ~ -  + d s j - ~ - d 6 j - - -  ~ - d 7 1 "  j + ds jT j -d91d lvu j )  

l im(ro tHj -  ~Ej ", ej--~- - k j (Ej  - grad~j))  = 0 

3Hj'~ 
lim rotE i + I.toj--~-) = 0, limdivHj = 0 

l im(eojdivE 1 - Po1Coi(¢i - 7i/ ' /) - I~iK/divui) = 0 

2 Xj + 21.tj 2 l.tj, {XjK j ~jKj 
Clj = 00------7' C2J = ~jOj a4j = P0j  asJ P0j  b4j 

~ jKjToj  Poj~[jCojToo d4 j p°jC°i 
b5j = K i ' b6j = Kj ' = ~'J ' d5j = 

901Coj 901 Coj'~ j ~j K j 
d6j = ' d71 = E0j ' d8j = £0j  ' d9j = E0j 

vjEj  3~,j + 2~t i 
~'J = ( l + v j ) ( 1 - 2 v j ) '  Kj = 3 

(1.2) 

= 0  

PojCj 

PojCoj'~ j 

u i is the displacement vector, T/is the temperature field, Oj is the electric potential, Itj and Fj are the 
electric and magnetic field vectors, cj is the specific heat capacity, a is the temperature coefficient of 
volume expansion, v i is Poisson's ratio, gj and E i are the shear modulus and modulus of elastloty, 
90 is the density of the material, Too is a constant, ~j is the electrostriction coefficient of volume expansion, 

J, . . . . . . . . . .  

~ is the thermal conductivity, 34 IS the electrical conductwlty, 3 is the temperature coeffioent of variation 
of the electrical potential, e0j and g0i are the dmlectrlc constant and magnetic permeablhty, Cai and Czi 
are the velocities of the expansion and shear waves of the medium, Coj is the specific electrical 
capacitance, and the values of the subscript j = 0, 1 denote the bodies which comprise the non-uniform 
body. The limits are taken as M -~ M0 e L. 

We will assume that, in the model considered, at points of the singular line of the interface of the 
media the conditions of thermoelectromechanical contact are satisfied in the form 

l i m ( u p o - u p l  ) = 0 ,  l i m ( u o o - U o l  ) = 0,  l i m ( u ~ o - U ~ l )  = 0 

l i m ( a o o - ( ~ o l  ) = 0,  lim(xpoo-Xool) = O, l i m(Xs o o -X~o l )  = 0 (1 .3)  

l im(To-Tl )  = 0, l im(qoo-qol)  = 0 (1.4) 

l i m ( ~ o - ~ l )  = O, l im(Joo-Jol)  = 0 (1.5) 

l im(Eoo-Eol)  = 0, lim(E~o-E~l ) = 0 (1.6) 

l im(Hoo-Hol )  = 0, l im(Hso-H , l )  = 0 (1.7) 

where the limits are taken as M --* M 0 in the plane normal to the singular line, qoj and J0j are the 
components of the heat flux density vector and the conduction current density vector, respectively, ~0j, 
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XOsj are the components of the stress tensor, and Eoj , Hsj , n o j  , nsj are the components of the magnetic 
ld vectors. 
Suppose the translational displacement of a local part of the interface between the media is defined, 

as a rigid whole, by the vector ro(t ) = {Xo(t),yo(t), z0(t )} in a fixed system of coordinates Oxyz. 
Conditions in the form (1.3) enable us to investigate certain cases in a single way, for example, the 

interaction of thermoelectromechanical fields near the singular line of a propagating cavity filled with 
an ionized gas (IJ01 = 2;901 = ~0sl = 0 )  [4] and the interaction of thermoelectroelastic fields in the contact 
problem of a rigid andelastic body [5]. 

We will obtain, in the local neighbourhood of the singular line, the distribution of the components 
of the stress tensor, the temperature field, the heat flux density, the conduction current and the 
components of the electromagnetic field vectors, if the composition is subjected to external dynamic 
force, thermal and electromagnetic actions. 

The initial conditions are not specified, since, as will be shown below, when Eqs (1.2) are satisfied a 
steady state will exist. 

2. LOCAL T H E R M O E L E C T R O E L A S T I C  FIELDS 

We will change in Eqs (1.2) to moving coordinates Xa, Yb zl, connected with the moving part of the 
interface by the formulae 

x = x l+xo ( t  ), Y = Yl +yo(t),  z = z1+zo(t)  

The derivatives with respect to t in the new coordinates have the form 

O~2U -- (Vo, V)(Vo, V)il l  -- (Vo, V ) ~ t l  t~((Vo' V)Ul)  °~2Ul (2.1) 
0t 2 0t + 0 7  

~ U  ¢~Ul 
~" = - (v°' V)u l  + Bt (2.2) 

where 

I dxo dyo dzo~, 
= [ Z ,  27 ,  Ivol < clo, Ivol < C2o, ul = u l (x l ,  Yl, El, t) 

Here and henceforth, when solving system (1.2), we will omit the identifying subscript for simplicity. 
The displacement of points of the elastic medium, the temperature field and the electric potential 

in the local region of the singular line, starting from the fact that they are equal to zero at points on 
the singular line, and also taking into account their form in the time-independent case [6-8], we will 
represent it in powers of the variable 9 of the local coordinates (1.1) 

m2 m5 
ux, = pm~A(p, O, s, t), Uy I = p B(p, O, s, t), Uz~ = p C(p, 0, s, t) (2.3) 

m 6 m 7 
T =  p T3(P,O,s , t )+  p T4(P,O,s , t )  (2.4) 

m$ m 9 
¢b= p ~ 3 ( P , O , s , t ) + p  ~4(P, 0, s,t) (2.5) 

where mq = m.(s,  t)(q = 1, 2, 5, 6, 7, 8, 9),A, B, C, T 3, T4, qb3, (I)4 a r e  bounded and continuous functions 
of their variables. 

The electromagnetic field strengths near the singular line will also be sought in the form of a power 
series 

E = {E21, E22, E23}, H = {H21, H22, H23 } 

E2r = pm'r- lEl (P,O,s , t ) ,  H2r = pm~'+3Hl(P,O,s,t), r = 1,2,3 
(2.6) 

where mq = mq(S, t) e (0, 1)(q = 11, 12 . . . .  ,16). 
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Representation (2.6) in the two-dimensional case of a body with a crack is identical with the well- 
known representation in [6]. 

We will write the equilibrium equations (1.2) in the new variables, taking into account relations (2.1) 
and (2.2), and change to local coordinates, taking representations (2.3)-(2.5) into account. 

As a result, equating the expressions of like powers of 9, we obtain a system of differential equations, 
which are compatible when ml = m2 = m and can be split into the following system 

dA d2A boB + bl~o0 0 
aoA + al- ~ + a2dO-" ~ + = 

dA dB " d2B 0 
coA + c3-~- 6 + doB + dl- ~ + a2 dO--- i = 

(2.7) 

and the equation 

d2 C dC 
gEdo'-"~ + g l ' ~  + go C = 0 ( 2 . 8 )  

Here  

ao = cl02 (m2 _ 1) - "0012 m ( m -  1) + "022 m(m - 1), a I = ( 2 m  - 1)13m1302, a 2 = c202 _ 1)022 

2 2 
2 ( m  - 1) - c20 ( m  + 1) + 2 '002 b 0 = 13m1302(m- 1), b I = el0 

c o = (1 - m m2)13011302, C 3 C~0 ( m  + 1) 2 2 - = - c20(m- 1) - `002 (m + 2) 

2 ( m 2 _ l ) +  2 2 2 2 
d 0 =  c20 1)02, d 1 = 1 3 0 1 1 3 0 2 ( 1 - m ) +  c10 ,  d 2 =  c lo  - 1)02 

2 2 2 2 2 
go = c20m2 -- `001 m s ( m s  - 1), g = 13011-102(1 - 2m5) ,  g2 = c20 - `002 

and 1301 and 1302 are the components of the velocity vector of the part of the interface in p, 0, s coordinates. 
By satisfying the heat conduction equation (1.2) using representations (2.3)-(2.5), as before we obtain 

that m7 = m and 

02T3 2 02T4  
+ m6T 3 = O, + mET4 = - b s f 6 ( 0 )  (2.9) 

0 0 2  0 0 2  

where 

0B 0A 02B 
f 6 ( o ~ )  = `001(m 2 -- 1)A + `001(m- 1)~-~ + `002(m + 1)~-~ + I)02002 

Substitution (2.3)-(2.5) into the equations of conservation of electric charge (1.2), we obtain that 
m 9 = m a n d  

02tI~3 msl:I) 3 = 0, 02cI14 m2tI~4 = - d 6 f 6 ( 0  ) (2.10) 
00------ 5- + 00------ T + 

Taking representations (2.3)-(2.5) into account it follows from Maxwell's equations (1.2) that 

m l l  = m12 = m13 = m14 = m15 = m16 --- m 0 

and when the displacement velocity of the interface of the media is non-zero we obtain 

E r = O, H r = O; r = 1 , 2 ,  3 ( 2 . 1 1 )  
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The solution of system of equations (2.7) has the form 

A(0, s, t) = 2Re(Co! exp(Sl0) + Co3exp(~30)) 

B(0, s, t) = 2Re(nlCmexp(810) + n3Co3exp(S30)) 

where 

nq = b30~3q + b20~2q + blo~ q + b 0 

and 8q = ~q + i~q are the complex non-conjugate roots of the characteristic equation 

~4 + d30~3 + d20~2 + d108 + do ° = 0,  

where b30 , b20, bl0, boo, d3o, d2o, dlo, doo are quantities defined by Vol, v02, clo, c20. 
The solution of Eq. (2.8) is 

C(0, s, t) = exp(txs0)(Csl cos~50 + C52sin1350) 

m 5 - 112 
(1~5 = 1)011)02 2 2 ' [35 -- 

C2o- Oo, 2(C~o- 192,) 

2 2 2 . .  2 2 2 2 2 
IDol = 4(c20- (vOl + 002))c20m5 + om(4msc20- Vol ) 

It follows from Eqs (2.9) that 

T3(0, s, t) = C61cosm60 + C62sinm60 

T4(0, s, t) = Cvl costa0 + C72sinm0 + 2Re(h71 exp(810) + h73exp(830)) 

where 

h7k = C o l ~  
g7k 
2 2 m +Sk 

g7k = -bs(vm( m2-  1)+ v m ( m -  1)nk8 k + l~02(m + 1)8 k + I~02nk82); 

and C61, C62, C71 and C72 are constants. 
The representations of O3 and 0 4 follow from Eqs (2.10) 

where 

k = l , 3  

03(0, s, t) = C81cosm$0 + C82sinm80 

04(0, s, t) = C91 cosm0 + C92sinm0 + 2Re(h91 exp(810) + h93exp(~30)) 

g9k 
h9k = Cok 2 2 

m +8  k 

g9k = -d6(1)Ol( m2- 1)+ vm(m-  1)nk8 k + 1)o2(m + 1)8 k + 1)02nk~2); k = l , 3  

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

By satisfying the contact conditions (1.3) using representations (2.3)-(2.5) with the values 

0 = Og(s) = arccos((gradfg, gradfo) ([gradfg[ [gradfo[)-z) (2.17) 
(o<Og(s)<n/2), g = 1,2 

(the equation fq(x, y, z) = 0 defines the surface Sq (q = 0, 1, 2)) at the point Mo ~ L, we arrive at the 
following system of equations 
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(o)OBo (o) a (o)OB1 (o)_ 
A 1 = A o, B I = B  o, go l ' -~ -+g02 ,~o  = g l l - - ~ - + g l 2 k t l  

h(o°)Bo + 14 (°)OA° -(o) u t,(o)OA1 "02 ~ = rill *"1 +'*12 20 

(2.18) 

bC° bC1 (2.19) Cl = C0, T-~-  = ~0 

Here  

Ix0, (0) 1 (0) ( (m + 1)V0) ' (0) 1 (o) 
~/=~'~l g°l =2)'IX°°' g 0 2 = ] t  1+  T - - 2 ~ 0 J  g l l=21" t° l '  g 1 2 = l +  

h(0) 21 .___2_.~ j ol ~/(m - 1), l'(°) t'(°) t'(°) 1 - vj = "02 = q(, "11 = m - l ,  "12 = 1, gt0j = 

(m+ 1)v I 
1 - 2 v  I 

By satisfying the thermal-contact conditions (1.4) and taking representation (2.4) into account, we 
obtain the following system of equations 

OTqo OTql I% (2.20)  
Tql = Tqo, "/6 O0 -- " ~ - ;  q = 3, 4; ~/6 = ~"-~ 

From the conditions for electrical contact (1.5) and taking representation (2.5) into account, we have 
the following system of equations 

b~q0 b~ql ~.o 
(I)ql = (I)q0' ]t8 ~0" . . . .  "~-ff-' q = 3, 4; )'8 = ~ (2.21) 

Substituting representations (2.15) into system (2.7), we obtain a system of linear homogeneous 
algebraic equations in the constants C01, C03, Cll and C13. Equating its determinant to zero, we obtain 
a characteristic equation for determining the order of the singularity of the dynamic stresses 

detQ = 0 

Q = (Prq), r, q = 1, 2 . . . . .  8; the rth row of the matrix Q is as follows: 

(Prq)q = (SlrleXp(~)llOp), SlrleXp(~llOp), Slr3eXp(~13Op), Slr3eXp(~13Op), 

(2.22) 

SOrleXp(~)OlOp) , ~Orlexp(~olOp), Sor3eXp(~o3Op), ~or3eXp(~o3Op)); r = 1, 2, 3,4 

(0) 5 ~ + (o) t,(o) ° .(0). (Sjlk, Sj2k, Sj3k, Sj4k) T ~- (njk , 1, gjk, hjk) T, gjk = gjl  j~ njkgj2 ,  hjk = ""jl 4- njkOjknj2, 

k = l , 3  

j =  1 w h e n  q =  1, 2, 3, 4 ; j = 0  w h e n  q = 5 , 6 , 7 , 8  
Sjrp = Syrp, p = 1 when r = 1, 2, 3, 4; Sjrp = sir-4p, P = 2 when r = 5, 6, 7, 8 

njk are the complex non-conjugate roots of Eq. (2.13), written for thejth components and the bar denotes, 
as usual, a complex-conjugate quantity. 

Using the solution of this system with zero determinant and representations (2.3)-(2.5) we can find 
the distribution of the local dynamic stresses and displacements in each body, making up the non-uniform 
body, close to the singular line of the moving part of the interface in local coordinates (1.1). 

l I 
u(O) mn m* u~O) m. m* 

= = (p M o 2 . K n ) + o ( p  ), m* "p E (P MotnK.) +°(p ), E = maxm. 
n=l n=l  
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l 

(~(0) ( (((m n + vo( l_m.) ) ( l_2Vo)- lMoln  + p = 2g ° ~ pm,-I 

n = l  

~ M o 2  n "x "~ 1 
+Vo(1 - 2Vo)- ~ ) K . ) +  0(2) 

1 

o0(°) = 2~t0 Z (pro,- I ( ( 2 _ 3 V 0 + V 0 m n ) ( I _ Z v 0 ) _ I M 0 1 n +  
n = l  

(2.23) 

~ Mo2n ) "~ 
+ (1 - Vo)(1 - 2Vo) - l - - ~ ) K n )  + O(1) 

l 

_ ( o )  ( l ( ( m n _ l ) M o 2 n + ~ ) K ~ j + O ( 1 )  Xoo = 21"t0 ~ pro,- OMo]n~ "x 
n = l  

where 

Mol n = 2Re(nolPonexp(8olO) + no3SoneXp(8o30) ) 

Mo2 n = 2Re(Ponexp(8ol0 ) + Sonexp(8o30)) 

l is the number of roots mn e (0, 1) of the singular characteristic equation (2.22), Pj,, and Sj~ (j = 0, 1) 
are quantities determined by the elastic characteristics of the materials of the components, and Kn are 
the stress intensity factors. The distribution of the stresses and strains of the other component of the 
composite body has a form similar to distribution (2.23), taking its constants of elasticity into account. 

By satisfying system (2.19), using (2.14), as previously we obtain the characteristic equation 

2 ~ - -  ,~ . 2 .  
(2.24) 

where 

co* = 2 r e - m ,  co = 0 , + 0 2 ,  q5 = Ivs,0-a,,llvS,0- l-' 
and 850 and 858 are quantities in representation (2.14), written for both components of the composite 
body. The distribution of the corresponding displacements and stresses is one of the components of 
the composite body has the form 

15 15 
(0)  rest y + _c0) m s , -  1 

= ~_, (P M3tK3t) - "~Os = go E (mstP M3tK3t) + 0(1) U s 

t = l  t = l  

15 _(o) ( "LOs = IJ'o E K3t pro''- l°3M3t'~ 00 J + O(1), M3t = 2Re(P3texp(8500)) 
t = l  

(2.25) 

where l 5 is the number of roots mst ~ (0, 1) of the characteristic equation (2.24), ms0 = maxm5t. The 
distribution of the displacements and stresses in the other component of the composite body has a similar 
form, taking its constants of elasticity into account. Distribution (2.23) and characteristic equation (2.22) 
correspond to the plane dynamic problem, while distribution (2.25) and Eq. (2.24) correspond to the 
dynamic longitudinal shear problem. 

Similarly, by satisfying systems (2.20) using representations (2.15), we obtain that 

m 6 = x / (2g -  co) < 1 (2.26) 
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The temperature field in local curvilinear coordinates (1.1), based on the solutions obtained and 
representation (2.14) of one of the components of the composite body, has the form 

T O = pro6(]'6 - 1)-l(k61cosm6(O - 01) + k62sinm6(0 - 01) ) + 

l 
m n 

+ 2 (p (G°61nC°SmnO + G ° 6 2 n s i n m n O  + F ° 6 n ( O ) ) )  + °(Pro6) (2.27) 
n = l  

where 
2 2 -1 

Fo6n(O ) = 2Re(C m exp (5010) (m  2 + 521) -1 -I- C02exp(5030)(m n + 503 ) 

G061n and G062n are determined when solving system (2.26), and k61 and k62 are the heat flux density 
intensity factors. 

The temperature field distribution in the other component of the composition has a similar form, 
taking its thermal characteristics into account. 

From systems (2.21), taking expressions (2.16) into account, we obtain the quantity which defines 
the order of the singularity of the conduction current density 

m 8 = n / ( 2 r c  - to)  < 1 (2.28) 

and, from the solution of the system of algebraic equations, we obtain the corresponding distribution 
of the electric potential in the matrix 

m 8 

~ 0  = P ( ) ' 8  - 1)-I (k81 cosm8( 0 _ 01)  -I- k81 sinm8(0 - 01)) + 
l 

m n 

+ E (p (GOSlnCOSmnO + G°81nsinmnO + F°6n(0))) + °(ProS) 

n = l  

(2.29) 

The constants G081n and G082~ are found when solving system (2.28), and k81 and k82 are the conduction 
current density intensity factors. 

The distribution in the other component of the non-uniform body also has a similar form, taking its 
electrical characteristics into account. 

Hence, both the local stresses and the components of the heat flux density and the components of 
the conduction current density in the neighbourhood of the singular line have a power-form of singularity. 

To obtain the case of a cavity filled, for example, with an ionized gas, propagating from the singular 
line, it is necessary to let gl tend to zero in the singular characteristic equations (2.22) and (2.24), and 
in the distributions of the components of the local stress tensor (2.23) and (2.25). As a result we obtain 

1 , _ . 1 .  , , 
sin(~ito (~o, ~o3) )=  q sln(~,co (5m-~o3)) Im65o = 7r/(2rc-to) (2.30) 

where 
- -  _ - 1  

q = Ih03gm - ho, go31lholgo3 - h01g03l 
and the corresponding distribution of the components of the stress tensor. 

Taking the limit in relations (2.22)-(2.24) as gl ~ oo, which corresponds to the case of the first 
type of boundary conditions in the contact problem for absolutely rigid and elastic thermoelectrically 
conducting bodies [5], we obtain singular characteristic equations, which are identical with Eqs (2.30), 
and where it is necessary to put q = ]n01 - n03 ] ]n01 - n03 ]-1, and also the corresponding local stress 
distribution. 

The orders of the singularity of the temperature field (2.26) and of the electric potential (2.28) are 
determined solely by the geometry of the interface of the media. 

Letting the quantity ~:1 tend to zero (infinity), we obtain the distribution of the temperature field for 
the thermally insulated (absolutely heat conducting) part of the interface of the media. For an electrical 
conductivity X1 = 0 or X1 ~ oo, we obtain from distribution (2.29) the distribution of the electric potential 
in the neighbourhood of the dielectric or absolutely conducting part of the interface. 
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3. A F I X E D  I N T E R F A C E  OF THE M E D I A  

Assuming 1301 = 0 and 1302 = 0 in relations (2.22) and (2.24), we obtain the well-known characteristic 
equations, which determine the order of the singularity of the dynamic stresses near the fixed interface 
of the media [9]. In this case terms containing singularities of the stresses 1 - mn (n = 1, 2, 3, 4) in the 
distribution of the temperature field (2.27) and of the electric potential (2.29) disappear, and they are 
converted into distributions for the time-independent case. 

The components of the electric field vector, as follows from relations (2.6), have power singularities 
and the following distribution in the matrix 

Eop = pm°- lk013sinrn0(0 - 01) + O(1) 

m 0 - 1 
EO0 = 9 k o l 3 C ° S m o ( O - O l ) + O ( 1 )  

Eos = O(1), m 0 = rc/(2rc-co) 

The components of the magnetic field have a similar form. 
Hence, we also obtain from boundary condition (1.5) the relation between the conduction current 

density intensity factor and the electric field strength intensity factor 

k82 = -(1 - 78)2k013(2mo](8) -1 (3.1) 

In the case of a fixed interface between the media with a singular line, the distribution of the local 
stresses and strains, the temperature field and the heat flux, the electric potential and the conduction 
current density turn out to be the same both for dynamic loads and for static loads and for time- 
independent thermal and electromagnetic influences. This result agrees with the well-known results in 
the literature [10, 11] in the case of cracks (gl = 0, o(s) = 2r 0 and strong dynamic influences. 

In the case of a cavity, the nature of the singularity of the components of the stress tensor is identical 
with that obtained earlier in [1], while the singularity of the electric potential agrees with well-known 
data [12]. Passing to the case of a two-dimensional plate with a crack, we obtain a singularity of order 
1/2 for the conduction current density, which agrees with the well-known result in [3]. 

The singularity components of the heat flux density and the conduction current density is the sum 
of two terms, one of them, of the order of 1 - m0, is due to the thermal and electrical properties of 
the composition, while the second, which is of the order of i - m n  (n = 1, 2, 3, 4), is due to the elastic 
properties of the composite and is determined by the stress intensity factors. Thus the thermal, electrical 
and mechanical fields are connected with one another near the singularities of the surface of the moving 
part of the interface between the media, i.e. local deformations near the singular line lead to 
perturbations of the thermal and electric fields. In the case of a fixed interface, this effect disappears, 
but a singularity of the components of the electric field vectors of the order 1 - m0 appears, and the 
conduction current density experiences the influence of the electromagnetic fields according to relation 
(2.31). 

The realization of relations (1.2) leads to systems of differential equations (2.7)-(2.10), not containing 
derivatives with respect to the variable t, i.e. the problem is solvable for the time-independent mode. 

The value of the opening angle of the interface at points of the singular line affects the order of the 
singularity of the heat flux, and electric potential and the electromagnetic field strength. The elastic 
properties of the composite and the velocity of displacement of the part of the interface, as follows 
from the singular characteristic equations (2.22) and (2.24), determine the singularity of the stresses 
and, via these, affect the singularity of the heat flux density and the conduction current density. 

We will illustrate the effect of displacement of part of the interface on the local stress state using the 
example of the value of 1 - ms, defining the singularity of the stresses "Cps, Z0s near the singular line of 
the surface of a propagating cavity filled with an ionized gas. From Eq. (2.30) we have 

m 5 = 
1 2 4 

) ) ( - -  112)) (]111"12 + 2(1  -- (TI~ + TI22 ~1 + (~1 + (1 _ ( ~  + 2..1/2. 2 2 

4X2 (1 2 2 . .  1/2 
+ -lq,  ) )) ), co* = 2 x - o )  

CO, 2 

(3.2) 
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Fig. 1 

where hi = VoaC201, h2 = ~02c21 are relative values of the components of the propagating cavity velocity 
vector. 

Numerical analysis of formula (3.2) shows that the values of ql and ~2, belonging to the interval 
(0.1, 1) have a considerable effect on the order of the singularity of the local stresses. 

The change in the order of the singularity of the stresses 1 - m5 as a function of the openingangle o~ 
of the surface of the propagating cavity at points of the singular line is shown in Fig. 1 for 1112 = 422 = 0.02. 
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